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Higher-Order Analysis

Abstract
The central objective of factor analysis is to explain the
greatest amount of variance in a data set with the smallest
number of factors. Higher-order analysis is an invaluable
tool that offers the benefit of parsimony provided by
first-order analysis with the opportunity to make data-
based generalizations beyond the first-order. Higher-order
analysis provides a hierarchical framework that better
honors the reality with which we perceive many phenomena in
the social sciences. Interpretation of higher-order factors
requires careful understanding and consideration on the

part of the individual researcher.
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Higher—-Order Analysis

Factor analysis is a useful technique for managing and
interpreting data with many variables. Reducing the number
of variables in an analysis to a smaller number of factors
facilitates understanding of the data and allows for
greater generalization. Higher-order analyses present
additional perspectives on data and opportunities for
increased generalization. Hetzel (1996) provides an
excellent review of the basic concepts in factor analysis.

Higher-order analysis makes sense conceptually when we
consider that many phenomena are considered to exist in a
hierarchical structure. For instance, the idea of general
intelligence (g) can be conceptualized as subsuming both
verbal IQ and performance IQ. Verbal IQ and Performance IQ
in turn each subsume several Wechsler subtests, and each
subtest subsumes several individual items (Gray, 1997).
Thus, higher-order analysis seems to represent our
perceptions of reality more accurately than first-order
analysis alone.

The the present paper provides a conceptual basis for
understanding higher-order analysis and elucidates the
interpretations that can be made from such analyses.
Although a conceptual, rather than a mathematical,

framework of factor analysis is presented here, a step-by-
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Higher-Order Analysis

step discussion of a real factor analytic example is
provided to help make computer-based results more clear.
Review of First-Order Analysis

To review, the objective of factor analysis is to
explain the maximum amount of variance in a set of measured
or observed variables with the smallest number of synthetic
or latent factors, or latent constructs. The relationships
among measured variables are expressed in a matrix of
associations, such as a correlation matrix or a variance-
covariance matrix. Like regression analysis, factor
analysis is an example of the general linear model and
therefore yields a set of weights that are applied to the
measured variables to obtain scores on the latent factors
(Vidal, 1997). The weights in factor analysis are called
factor pattern coefficients. The factor pattern
coefficients are analogous to the weights in regression
analysis (Hetzel, 1996; Vidal, 1997).

Factor analysis also yields a factor structure matrix,
which is composed of factor structure coefficients, that
represent the bivariate correlations between each variable
and each one of the factors. The factor structure,
coefficients are analogous to the structure coefficients in

regression analysis (Hetzel, 1996; Vidal, 1997). When the



Higher-Order Analysis

factors are uncorrelated, the factor pattern matrix is the
same as the factor structure matrix.

The factor pattern and the factor structure matrices
together provide information from which the factors can be
identified or interpreted. Typically, factor pattern and
factor structure coefficients with magnitudes greater than
.60 are considered to be high and coefficients with
magnitudes greater than .30 are considered to be moderately
high (Hetzel, 1996). Interpretation of factors, however,
should be based on convergence of information from the
relevant coefficients and information‘from other relevant
sources (Hetzel, 1996).

Each measured variable in a factor analysis has a
communality coefficient (h?) that equals the sum of the
squared structure coefficients for that variable. The
communality coefficients range from 0 to 1 and represent
the amount of variance in each measured variable that is
reproduced by the latent factors as a set. Each factor, or
latent construct, in a factor analysis has an eigenvalue
which represents the variance in the original data matrix
that is reproduced by each of the factors. Eigenvalues
range from 0 to the number of variables. In Principal
Components Analysis (PCA), the sum of the squared structure

coefficients for a factor equals the eigenvalue for that
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factor. The eigenvalue can be converted into an effect size
statistic by dividing the eigenvalue for a factor by the
number of measured variables. In PCA, the sum of the
eigenvalues is equal to the sum of the communality
coefficients and can be divided by the number of variables
to yield an effect size‘statistic that represents the
portion of variance from the original data matrix that is
reproduced by all the factors as a set.

Upon examination of the relevant statistics, the
decision of which factors to retain can be made according
to several rules. Examples of factor retention rules
include eigenvalue greater than one, scree test, tests of
statistical significance, Minimum Average Partial (MAP),
and parallel analysis. For more information concerning
factor retention methods, refer to Hetzel (1996) or Stevens
(1996) . Knowledgeable researchers should use an approach
based on theory and personal values as well as computer
results.

Typically, after factors are extracted, the first
factor reproduces the greatest amount of the variance.
Factor rotation can be helpful by spreading the variance
more evenly across the factors and thereby clarifying the
factor structure. Factor rotation can be accomplished

either orthogonally (yielding uncorrelated factors) or
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Higher-Order Analysis

obliquely (yielding correlated factors). Examples of
computerized orthogonal rotation procedures include Varimax
and Quartimax; examples of computerized oblique rotation
procedures include Promax and Oblimin. After rotation,
factors are ready for interpretation by the researcher.

Imagine a test of 200 items. Analyzing scores on each,
separate item could be a difficult and time-consuming
process. With factor analysis, however, a set of factors
could be extracted that would allow for a more efficient
analysis of the data. For instance, six factors may be
extracted that may be called, “vocabulary,” “written
clarity,” “reading comprehension,” “quantitative concepts,”
“arithmetic speed,” and “mathematic analysis.” Each of the
six factors would be expected to explain a portion of the
variance in some items. Instead of attempting to make sense
of 200 items separately, we can interpret scores on only 6
factors. This is the general purpose of factor analysis.

It may happen that a degree of generalization beyond
the six first-order factors is desired. For this purpose,
higher-order factors may be extracted.

Higher-Order Analysis

The first-order analysis is a close-up view that

focuses on the details of the valleys and the peaks in

mountains. The second-order analysis is like looking

at the mountains at a greater distance, and yields a
potentially different perspective of the mountains as
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constituents of a range. Both perspectives may be
useful in facilitating understanding of data.
(Thompson, 1990)
In other words, first-order factors provide a high degree
of accuracy, but a low degree of generalization. Second-
order factors offer a lower degree of accuracy, but a

higher degree of generalization.

Higher-Order Factor Extraction

The higher-order factor analytic process is described
as follows. First, the first-order factors must be rotated
obliquely, yielding correlated factors in the form of aq
factor pattern coefficient matrix (Pyx¢) . The resulting
correlated factors make up a factor x factor correlation
matrix (Rexe) that itself is then used as the matrix of
associations, or input, for the second-order factor
analysis. From the factor x factor matrix of associations,
second-order factors (Pgxn) are extracted and a retention
rule is applied to determine the number of factors.

An important note about factor retention rules in
higher-order analysis must be made. Most methods of factor
retention that are used for first-order factors can also be
used for second-order factors. The exception to this rule
is statistical significance testing. Statistical
significance testing is inappropriate for use with higher-

order factors because the sampling distribution of
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correlation coefficients for the first-order factors will
vary according to the rotation‘procedure used (Gorsuch,
1983) . Thus, informed researchers should use the eigenvalue
> 1 rule, scree test, or some other extraction rule at the
second-order level.

Returning to our previous example, we may imagine that
two possible second-order factor names would be “verbal
proficiency” and “quantitative proficiency.” We could then
rotate the higher-order factor matrix (Pexn), factors by
higher-order factors, obliquely to reveal correlated
second-order factors. The second-order factor by second-
order factor correlation matrix could potentially be used
to extract third-order factors. In our previous example, a
possible third order factor may be named “Intelligence”.

The process of higher-order factor extraction
continues until oblique rotation yields uncorrelated
factors, or until only one factor is extracted. Typically,
factors beyond second or third order are rare. Figure 1 is
a graphical representation of first, second, and third
order factors for our example.

Interpretation of Higher-Order Factors

One common mistake in factor analysis is to base one’s
interpretations of higher-order factors on the first-order

factors (Thompson, 1990). This practice is essentially
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“basing interpretations upon interpretations” (Gorsuch,
1983, p. 245). When we extract first-order factors, our aim
is to remove the variance that is not important or useful
in explaining our object of interest. Variance that is not
useful in explaining first-order factors, may be useful in
explaining second-order factors. Our object of interest
changes from one step to the other, so it would be
senseless to limit the amount of variance under
consideration to that which was useful in describing the
first-order factors. A better approach to the
interpretation of second-order factors is to use
information given by the variables themselves (Thompson,
1985; 1990). The same holds true for the interpretation of
third-order factors and beyond.

Three methods for interpreting higher-order factors
using information from the original variables have been
developed and will now be discussed. First, Gorsuch (1983)
suggested that the first-order factor pattern matrix (Pyxe)
can be multiplied by the orthogonally rotated higher-order
factor pattern matrix (Psm). This multiplicative process
yields a variable-by-higher-order factor matrix of factor
pattern coefficients (Pyxun) .

Second, Thompson (19920) suggested that researchers use

Gorsuch’s (1983) rule, but apply a Varimax rotation
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Higher-Order Analysis 11

procedure to the resulting matrix (Pyxn). Thompson reasoned
that, because rotation is used to clarify other factor
structures, it seems appropriate to employ orthogonal
rotation to clarify interpretations of matrix @Pva).

Third, the Schmid-Leiman (1957) solution is another
method for interpreting higher-order factors. This
procedure allows for the simultaneous interpretation of
both orders of factors with respect to the observed
variables. The Schmid-Leiman solution residualizes
(removes) the variance from the first-order factors that is
present in the second-order factors, thereby
orthogonalizing the first and second-order factors to each
other. The following heuristic example should help to make
these methods and the process of higher-order analysis more
clear.

Example Using “SECONDOR”

This example is based entirely on Thompson’s (1990)
analysis of dissertation data. Thompson developed the
FORTRAN program, SECONDOR, to compute higher-order
principal components analyses. The program also offers
various methods of factor interpretation. This example 1is
presented, with permission, to illustrate the step-by-step
process of higher-order analysis and to facilitate

understanding of higher-order results.
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Higher-Order Analysis 12

The matrix of associations, or input, used in this
example is a correlation matrix of 24 variables and is
presented in Table 1. The first row of values for each
variable represents the correlation between that variable
and variables 1 to 12. The second row for each variable
represents the correlation between that variable and
variables 13 to 24.

A principal components analysis was conducted, and 24
factors were extracted. The eigenvalues are presented in
Table 2. According to the eigenvalue > 1 rule, only six
factors were retained. Table 3 presents the first-order
principal components matrix and h?. Remember that the values
presented in this matrix are analogous to the BETA weights
in regression analysis. Because the factors have not
undergone oblique rotation, and are therefore orthogonal to
each other, the principal components matrix represents both
the factor pattern matrix (BETA) weights and the factor
structure matrix (structure coefficients).

The next step in the analysis is to apply an oblique
rotation procedure to the factor pattern matrix in Table 3.
The Promax method of oblique rotation was used for this
example, and the resulting factor pattern matrix is
presented in Table 4. Because an oblique rotation procedure

was used, the factors are now correlated, and the factor
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Higher-Order Analysis 13

pattern matrix must be interpreted in conjunction with the
factor structure matrix presented in Table 5.

The factor correlation matrix is presented in Table 6.
This matrix shows the correlations between each of the
first-order factors. If the factors were uncorrelated,
there would still be ones on the diagonals of the matrix,
but there would be zero, values off the diagonals.

The factor correlation matrix presented in Table 6 was
then used as the matrix of associations, or input, for the
second-order factor analysis. The second-order eigenvalues
are presented in Table 7. Given the eigenvalue > 1 rule,
two second-order factors were retained. The second-order
factor matrix is presented in Table 8. The rows in Table 8
represent the 6 first-order factors and the columns
represent the second-order factors. If this was a first-
order analysis, the rows would represent the 24 variables
and the columns would represent the 6 first-order factors.

The second-order factor matrix was rotated
orthogonally to redistribute variance and facilitate
interpretation, as reported in Table 9. If there were more
factors, and a theoretical basis for doing so, the factor
matrix could have been rotated obliquely and third-order
factors could possibly have been extracted. Varimax was the

orthogonal rotation procedure used in this example.
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Higher-Order Analysis 14

Now that the higher-order factors have been
identified, interpretation becomes the central issue.
Remember that it is inappropriate to base interpretations
of second-order factors on interpretations of first-order
factors. Better practice is to use a rule such as Gorsuch’s
(1983) method in which the first-order, obliquely-rotated
factor pattern matrix (Table 4) is multiplied by the
second-order, orthogonally rotated factor matrix (Table 9).
The resulting product matrix is presented in Table 10.

Once multiplication of the two matrices 1is
accomplished, the trace for the second-order variables 1is
interpretable with respect to the variables themselves. In
other words, if the trace for second-order Factor A (5.25)
is divided by the number of variables, we can say that
21.9% of the variance in Factor A is explained by the
variance of the variables.

Table 11 presents a Varimax rotation of the product
matrix presented in Table 10. Remember that Thompson (1990)
suggested that this rotation procedure be applied to the
product matrix before interpreting the second-order factors
with respect to the variables. Notice that the distribution
of trace appears more balanced after the rotation
procedure. This difference is due to the rotation, which

distributes the variance more equally across the factors.
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Higher-Order Analysis 15

Table 12 presents the Schmid-Leiman (1957) solution
for this example. The variable numbers and names are listed
in the first column; the second-order factors head the next
two columns; the first-order factors head the next six
columns; and the last column contains the h? values. The
trace is listed at the bottom. Using Table 12, we are able
to simultaneously interpret the first and second-order
factors in relation to the variables.

Notice that second-order Factor A appears to be
explained mostly by variables 1, 4, 8, 12, 18, 19, 21, and
23. Judging by the names of these variables, we might
interpret second-order Factor I to represent “intellect.”
Second-order factor B appears to be explained mostly by
variables 7, 10, and 20. Given these variable names, we
might interpret second-order Factor II to represent
“warmth.” Keep in mind that the sign, positive or negative,
of the values in the columns is important.

Notice that the trace for the second-order factors is
the same as it was for Gorsuch’s solution, but the trace
for the first-order factors is less than their original
eigenvalues. This reduction in trace occurred because the
Schmid-Leiman solution orthogonalizes the first-order
factors to the second-order factors, so that the shared

variance is taken out of the first-order factors. In this

o 16




Higher-Order Analysis 16

example, the second-order factors appear to dominate the
factor space, so we know that we are getting a good deal of
information from the second-order factors.

Although the second-order factors provide much
information, it may still be important to interpret the
first-order factors in relation to the variables. First-
order Factor III, for example, appears to be explained by
variables 2, 6, 7, 9, and 14 and may be interpreted to
represent undirectedness. Most of the variables important
to first-order Factor III, however, are not important to
the second-order factors. Note that in Table 9, the
communality coefficient (h?) associated with Factor III is
considerably low. This is consistent with the relative lack
of importance of first-order Factor III at the second-order
level. Researchers must make judgments about interpreting
factors at either the first- or second-order or both.

Summary

This paper has presented a step-by-step illustration
of the higher-order factor analytic process. Several
interpretation procedures have been reviewed and the
benefits of each discussed. Interested students are
referred to McClain (1996) for another example using

Thompson’s (1990) FORTRAN program.
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Higher-Order Analysis 17

Given the hierarchical nature of many phenomena in the
social sciences, higher-order analyses often appear to be
preferable to first-order analyses used alone. Researchers
must, however, be careful and responsible in making
interpretations from their results. It is simply not
acceptable to make interpretations of higher-order factors
directly from the interpretations of first-order factors.
This uninformed approach is completely unnecessary in light
of the availability of the several interpretation aids as
described previously. It is hoped that this paper has
contributed to understanding of higher-order analysis and
will encourage researchers to make more thoughtful

decisions when interpreting higher-order results.
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Figure 1

First, Second, and Third-Order Factors
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Table 2

Eigenvalues for First-Order Analysis

Variables Eigenvalues
1 6.60609
2 3.10131
3 1.87082
4 1.18534
S 1.08376
6 1.01812
7 0.96067
8 0.82819
S 0.78923

10 0.73786

11 0.69134

12 0.62247

13 0.57061

14 0.53843

15 0.47003

16 0.45479

17 0.42017

18 0.39013

19 0.34574

20 0.30675

21 0.29000

22 0.27659

23 0.25382

24 0.18774
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Table 3

First-Order Principal Components Pattern/Structure Matrix
and h?
Variables Factors h?

I II III v \Y% VI

1 0.51523 ~-0.30896 -0.20748 0.35048 -0.00547 -0.24427 0.58649

2 -0.21982 0.11050 0.45469 -0.16208 -0.13961 0.12283 0.32812

3 0.67640 -0.04240 0.00204 0.33686 -0.17469 0.12246 0.61830

4 0.52508 -0.48196 0.05650 0.35249 ~0.09473 0.03851 0.64590

5 0.49114 0.20269 0.01245 0.17140 ~0.02548 0.63937 0.72128
6 -0.03212 0.32509 0.52468 0.47626 0.11710 -0.1551% 0.64661
7 -0.29660 -0.45569 0.44131 0.03683 -0.24539 -0.28243 0.63173

8 0.62144 -0.26451 -0.17713 0.07700 -0.27008 0.08567 0.57374

9 -0.10176 -0.06869 0.56777 -0.12694 -0.30090 0.14040 0.46381
10 0.63817 0.53222 0.04011 -0.01848 -0.24008 0.02957 0.75099
11 0.49836 -0.29985 0.16396 -0.01976 0.10954 0.08132 0.38416
12 0.79435 -0.05498 -0.04111 -0.05451 -0.13076 0.02183 0.65626
13 0.41048 -0.40203 0.26123 -0.15850 0.22116 -0.09136 0.48074
14 -0.10942 0.06450 0.73843 0.16794 0.00001 -0.04558 0.59170
15 0.64379 0.43347 0.06355 ~0.12372 ~0.24043 -0.12993 0.69640
16 0.75477 0.36278 0.10726 -0.08282 -0.20893 -0.02519 0.76393
17 0.66474 0.32110 0.01652 -0.22608 0.00838 -0.05138 0.59908
18 0.55989 -0.50135 -0.00898 0.20085 0.11177 0.05103 0.62036
19 0.71823 -0.09250 -0.02882 -0.01430 0.03611 -0.36007 0.65640
20 0.35832 0.41899 0.14548 0.23877 0.60881 -0.01471 0.75299
21 0.51820 -0.52506 0.10948 -0.26780 0.22749 0.18243 0.71296
22 0.21196 -0.56770 0.27031 -0.29146 0.16595 0.23587 0.60840
23 0.64161 -0.06695 0.04837 -0.32538 0.05262 -0.35477 0.65299
24 0.50631 0.57267 0.15781 -0.16881 0.28809 0.03765 0.72211

27



Higher-Order Analysis
Table 4
Promax-Rotated Factor Pattern Matrix
Variable Factor
I II III IV \ VI

1 -0.02169 -0.71647 -0.19015 0.06500 0.07318 -0.13953

2 0.12826 0.31334 0.48452 ~-0.08565 -0.04537 0.05279

3 0.25890 -0.64470 0.04700 0.06368 0.04026 0.26581

4 ~-0.12367 -0.77168 0.09409 -0.16557 0.00695 0.10439

5 0.15269 -0.22425 -0.01878 -0.12821 0.08830 0.75637

6 0.00751 -0.19652 0.49667 0.30257 0.59502 -0.02732

7 -0.19785 -0.15510 0.55929 -0.05180 -0.16375 -0.39318

8 0.25373 -0.53321 -0.10036 -0.07920 -0.28102 0.14018

9 0.16537 0.12209 0.65302 -0.14336 -0.16942 0.05900
10 0.84798 -0.06441 0.06669 0.239%92 -0.00218 0.16733
11 0.06118 -0.26115 0.08107 -0.44390 0.08030 0.07994
12 0.52254 -0.33689 -0.05283 -0.18127 -0.10493 0.08911
13 0.02436 -0.11268 0.13150 -0.59205 0.12267 -0.15208
14 0.01732 0.00415 0.72816 -0.04634 0.33111 -0.04661
15 0.89559 -0.02297 0.08525 0.17171 -0.05431 -0.03007
16 0.85451 -0.11531 0.10977 0.06002 -0.01731 0.08335
17 0.72720 0.08352 -0.06499 -0.11209 0.05128 0.01432
18 -0.16051 -0.60285 -0.06395 -0.37688 0.08223 0.08733
19 0.46301 -0.34012 -0.08670 ~-0.11877 0.08170 -0.29440
20 0.05940 0.01051 -0.11090 -0.09687 0.81106 0.13525
21 -0.04295 -0.10634 -0.03665 -0.80903 -0.02784 0.09660
22 ~-0.19885 0.02679 0.16153 -0.80484 -0.07934 0.09633
23 0.59444 0.00436 -0.04237 -0.30618 -0.02541 -0.36932
24 0.60843 0.31059 -0.02877 -0.13259 0.40474 0.12906

28
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Table 5

First-Order Factor Structure Matrix

Var. Factors
I II III v \Y VI

1 0.25252 -0.72363 -0.29105 -0.26257 0.08840 -0.20610
2 -0.08142 0.30906 0.49400 0.06442 -0.05330 0.10363
3 0.50227 -0.67480 -0.09962 -0.23560 0.13087 0.25448
4 0.17992 -0.77491 -0.00027 -0.42971 -0.02819 -0.00726
5 0.41058 -0.26079 -0.08809 -0.16519 0.16106 0.74441
6 0.03486 -0.01175 0.44697 0.28384 0.56635 0.03031
7 -0.37797 -0.06459 0.58371 -0.06076 -0.28186 -0.43533
8 0.42315 -0.65033 -0.22099 -0.37163 -0.19002 0.10416
9 -0.04009 0.10742 0.63041 -0.06894 -0.17987 0.08982
10 0.81244 -0.22850 -0.12520 0.00854 0.25125 0.32383
11 0.28745 -0.44857 -0.02138 -0.54844 0.08390 0.01222
12 0.68401 -0.58861 -0.23903 -0.46214 0.05221 0.10795
13 0.20465 -0.36483 0.03435 -0.64816 0.09643 -0.22724
14 -0.06505 0.07491 0.69075 0.02888 0.27214 -0.01646
15 0.81469 -0.24743 -0.12080 -0.08065 0.20134 0.12748
16 0.85775 -0.35826 -0.11052 -0.20125 0.22643 0.21340
17 0.76269 -0.22020 -0.25012 -0.28023 0.26260 0.11940
18 0.20205 -0.70676 -0.15315 -0.57661 0.04051 -0.04265
19 0.61196 -0.58956 -0.27859 -0.43189 0.21210 -0.27093
20 0.36486 ~0.06305 -0.19795 -0.07800 0.83943 0.16004
21 0.23148 -0.42421 -0.11854 -0.83364 ~0.05685 -0.02666
22 -0.03550 -0.20701 0.14244 -0.71260 -0.17139 -0.03375
23 0.62371 -0.36756 -0.22995 -0.52034 0.12646 -0.31947
24 0.68247 0.05080 -0.17992 -0.14431 0.57964 0.24939

29




Table 6

First-Order

Higher-Order Analysis

Factor Correlation Matrix

I 1.00000

II -0.34165

IIT -0.25003

v -0.27462

v 0.28851

VI 0.15323

.00000

.14358

.41645

.01235

.09625

1.00000
0.10189 1.00000
-0.08345 0.03041 1.00000

0.02842 0.12899 0.03738 1.00000

30
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Table 7

Higher-Order Analysis

Eigenvalues for Second-Order Analysis

Factors Eigenvalues
I 1.83302
II 1.25257
III 0.95428
v 0.88463
v 0.57924
VI 0.49626

31
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Table 8

Second-Order Factor Pattern/Structure Matrix

First-Order Factors Second-Order Factors
A B
I 0.74760 0.38289
II -0.72913 0.30805
I1I -0.46220 -0.16502
v -0.66508 0.42795
\Y | 0.28940 0.62338
VI -0.05251 0.64195

32




Higher-Order Analysis 30

Table 9

Varimax Rotated Second-Order Factor Pattern/Structure

Matrix and, h?

Factor A B h?

I 0.51462 0.66384 0.70552
IT -0.79096 -0.03029 0.62653
ITT -0.34858 -0.34548 0.24086
Iv -0.78380 0.10545 0.62547
v -0.00232 0.68728 0.47235
VI -0.31983 0.55907 0.41485
Trace 1.72860 1.35700 3.08560

From Thompson, B. (1990). SECONDOR: A program that
computes a Second-order principal components analysis and

various interpretation aids. Educational and Psychological

Measurement, 50, 577. Reprinted with permission of the

author.
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Table 10

Product Matrix (Puxn) and h?

Higher-Order Analysis

Var. A B h?
1 0.61533 0.05214 0.38135
2 -0.30037 -0.10244 0.10072
3 0.49176 0.35815 0.37010
4 0.61030 -0.04555 0.37454
5 0.12087 0.58467 0.35645
6 -0.24362 0.26493 0.12954
7 -0.00737 -0.65769 0.43261
8 0.60520 0.09614 0.37551
9 -0.14520 -0.21810 0.06865
10 0.22253 0.65919 0.48405
11 0.53196 0.07358 0.28839
12 0.66761 0.33393 0.55721
13 0.56823 -0.08899 0.33080
14 -0.19773 -0.04358 0.04099
15 0.32450 0.52974 0.38593
16 0.41903 0.57386 0.50490
17 0.41399 0.53410 0.45665
18 0.68380 -0.00060 0.46758
19 0.72457 0.22665 0.57638
20 0.09170 0.70024 0.49875
21 0.67807 -0.06308 0.46376
22 0.42038 -0.27416 0.25189
23 0.67540 0.15289 0.47954
24 0.13918 0.74077 0.56811
Trace 5.25000 3.69440 8.94440

34
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Table 11

-Higher-Order Analysis

Varimax Rotated Product Matrix and h?

Var. A B h?
1 0.603 0.135 0.381
2 -0.248 -0.142 0.101
3 0.439 0.421 0.370
4 0.611 0.037 0.375
5 0.041 0.596 0.356
6 -0.277 0.230 0.130
7 0.082 -0.653 0.433
8 0.587 0.177 0.376
9 -0.114 -0.236 0.069

10 0.131 0.683 0.484

11 0.517 0.145 0.288

12 0.616 0.421 0.557

13 0.575 -0.011 0.331

14 -0.190 -0.070 0.041

15 0.250 0.569 0.386

16 0.338 0.625 0.505

17 0.338 0.585 0.457

18 0.678 0.092 0.468

19 0.687 0.323 0.576

20 -0.004 0.706 0.499

21 0.680 0.029 0.464

22 0.454 -0.215 0.252

39
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Higher-Order Analysis

23 0.649 0.243 0.480
24 0.038 0.753 0.568
Trace 4.796 4.149 8.944

From Thompson, B. (1990). SECONDOR: A program that
computes a Second-order principal components analysis and

various interpretation aids. Educational and Psychological

Measurement, 50, p.578. Reprinted with permission of the

author.

36
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Table 12
Schmid-Leiman Solution
Variable A B I II III IV V VI h?
1 Intelligent 0.615 0.052 =-0.012 -0.438 -0.166 0.040 0.053 -0.107 0.616
2 Undirected -0.300 -0.102 0.070 0.191 0.422 -0.052 -0.033 0.040 0.326
3 Honest 0.492 0.358 0.140 -0.394 0.041 0.039 0.029 0.203 0.59%0
4 Scholarly 0.610 -0.046 -0.067 ~0.472 0.082 -0.101 0.005 0.080 0.625
S5 Personable 0.121 0.5895 0.083 ~-0.137 -0.016 -0.078 0.064 0.579 0.727
6 Easy ~0.244 0.265 0.004 =-0.120 0.433 0.185 0.432 -0.021 0.553
7 Distant -0.007 -0.658 -0.107 -0.095 0.487 -0.032 -0.119 ~0.301 0.796
8 Informed 0.605 0.096 0.138 -0.326 -0.087 -0.048 -0.204 0.107 0.564
9 Docile -0.145 -0.218 0.090 0.07%5 0.569 -0.088 -0.123 0.045 0.431
10 Caring 0.223 0.659 0.460 -0.039 0.058 0.147 -0.002 0.128 0.739
11 Systematic 0.532 0.074 0.033 -0.160 0.071 -0.272 0.058 0.061 0.401
12 Effective 0.668 0.334 0.284 -0.206 -0.046 -0.111 -0.076 0.068 0.705
13 Profound 0.568 -0.089 0.013 -0.069 0.115 -0.362 0.089 -0.116 0.502
14 Simple ~-0.198 -0.044 0.009 0.003 0.634 -0.028 0.241 -0.036 0.504
15 Concerned 0.325 0.530 0.486 -0.014 0.074 0.105 -0.039 -0.023 0.641
16 Humane 0.419 0.574 0.464 -0.070 0.09%6 0.037 -0.013 0.064 0.740
17 Motivating 0.414 0.534 0.395 0.051 -0.057 -0.069 0.037 0.011 0.624
18 Analytical 0.684 -0.001 -0.087 -0.368 -0.056 =-0.231 0.060 0.067 0.675
19 Knowledgeable 0.725% 0.227 0.251 -0.208 -0.076 ~0.073 0.059 -0.225 0.748
20 Humorous 0.092 0.700 0.032 0.006 ~-0.097 -0.059 0.589 0.103 0.870
21 Exacting 0.678 -0.063 -0.023 -0.065 -0.032 -0.495 -0.020 0.074 0.721
22 Rigorous 0.420 -0.274 -0.108 0.016 0.141 -0.493 -0.058 0.074 0.53%5
23 Enlightened 0.675 0.153 0.323 0.003 -0.037 -0.187 -0.018 -0.283 0.700
24 Warm 0.139 0.741 0.330 0.190 -0.025 -0.081 0.294 0.099 0.817
Trace 5.25 3.69 1.27 1.06 1.46 0.92 0.79 0.71 15.15
From Thompson, B. (1990). SECONDOR: A program that

computes a Second-order principal components analysis and

various interpretation aids. Educational and Psychological

Measurement,

50,

author.

p.

579. Reprinted with permission of the
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